The Neonatal Calf Immune Response - When Should We Vaccinate?

Chris Chase
Department of Veterinary and Biomedical Sciences
South Dakota State University
Brookings, SD

Neonatal Immunology
- All food animals are immunocompetent at birth.
- Colostrum supplies immediate specific and non-specific immunity.
- The normal neonate is agammaglobinemic.
- Fetal Calf: Respond to viruses at 90-120 days. >180 days responds to bacteria.
- Usually consider 150 days of gestation breakpoint for immunocompetence

Immunity in the Neonate
- Essentially all components of the immune system develop in utero in domestic animals
- Less efficient than in the adult
- Gradually improve over the first weeks of life

Maternal Immune Suppression
- Offspring immature immune system
- Placenta
- Maternal immune system
- Environment
- Infection
- Vaccination
- Prevent immunological rejection of fetus

Colostral Anti-inflammatory Cytokines
- Th2 cytokines - TGF-beta, IL-4, IL-10
- Maternal Interference

Credits
- Kuby Immunology
- Immunobiology, 6th edition
- David Topham, University of Rochester

All food animals are immunocompetent at birth. Colostrum supplies immediate specific and non-specific immunity. The normal neonate is agammaglobinemic. Fetal Calf: Respond to viruses at 90-120 days. >180 days responds to bacteria. Usually consider 150 days of gestation breakpoint for immunocompetence Immunity in the Neonate
- Essentially all components of the immune system develop in utero in domestic animals
- Less efficient than in the adult
- Gradually improve over the first weeks of life
Anti-inflammatory factors from Colostrum keep the Gut from Overreacting

Immunodeficiency in the Neonate - Innate Response
- Humoral elements ↓-complement and IFN
- Neutrophils
 - ↓ Phagocytic Activity & Oxidative Burst
 - ↑ Recovered with Colostrum in vivo and in vitro
- Monocytes
 - Slightly lower
 - Phagocytic activity is normal but Oxidative Burst ↓
- Natural Killer Cells
 - Lower?

Immunodeficiency in the Neonate-Acquired
- Decreased acquired immune mechanisms
 - Decreased lymphocyte responsiveness
 - ↓ MHC II- ↓ Antigen presented to T cells
 - Born with no memory T or B cells
 - Antibody production ↓ CD40 ↓ CD40L B-cell differentiation
 - Must obtain antibody from the mother
 - From the colostrum

How Early Can the Calf Respond?

Lymphocyte Development in Calves

Kampen et al Vet Immunol Immunopath 2006 113:53-63

Lymphoid levels for T cells are similar- no gamma delta cells
Intranasal vs Parenteral

- Intranasal- immediate
- Parenteral- delayed
- In all routes between day 4-14 in response

Intranasal studies

- Nasalgen
 - Day old calves
- Onset
 - Conducted in young calves (3-8 days of age)
 - Challenged with virulent strains of IBRV, BVD 1, BVD 2, BRSV, Pasteurella multoidea – 21 to 28 days post-vaccination
- BRSV Nasal studies 14 day old calves-Inforce 3
- BVDV- 3-4 week old calves- Roth, Ridpath study

Intranasal Vaccines

- Beware of sensitive diagnostics-PCR
- Not sure how long animals will be PCR positive
- Animals IBR or BRSV positive from vaccine
- Booster with parenteral vaccine

Neonates-Acquired Immunity

Calves vaccinated at 7 days of age- CMI response but no Ab

Overcoming Neonatal Immunosuppression

- Adjuvants- increase immune response and Th1 response
- Antigen- Danger signal Omp but no LOS or LPS- too much inflammation
Immunomodulators

- Inactivated organisms
 - *Propionibacterium acnes (PA)* gram-positive
 - Parapoxvirus ovis- (PPVO) orf virus
- Innate Immunity-
 - Neutrophil, Macrophage phagocytosis ↑
 - Microbial killing ↑
- Adaptive Immunity-
 - Not as clear-
 - no increase in T or B cell cytokines PA,
 - ↑ T cell cytokines PPVO

The "common mucosal immune system"

Mucosal Immunology

Epithelial Cells and Mucosal Immunity

Mucosal Immunity

Organization of Mucosal Inductive Centers
Organization of MALT

Mucosa Associated Lymphoid Tissue (MALT)

Secretory IgA is the most important Immunoglobulin for Mucosal Immunity

Intraepithelial lymphocytes

Maternal Antibody Interference

• Antibody produced by the dam
• Transferred via the colostrum to the calf

Maternal Interference

THE WINDOW OF SUSCEPTIBILITY TO HERD INFECTIONS

MATERNAL DERIVED IMMUNITY

FULL IMMUNE COMPETENCE

Colostral IgG half-life is 17 to 32 days
Half Life of Maternal Antibody

<table>
<thead>
<tr>
<th>Virus</th>
<th>Half Life (days)</th>
<th>Time to 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBR</td>
<td>12.7 ± 5.5</td>
<td>65.1 ± 37.8</td>
</tr>
<tr>
<td>BVDV1</td>
<td>20.5 ± 6.2</td>
<td>117.7 ± 37.7</td>
</tr>
<tr>
<td>BVDV2</td>
<td>20.5 ± 12.4</td>
<td>93.9 ± 61.9</td>
</tr>
<tr>
<td>PI3</td>
<td>21.7 ± 9.6</td>
<td>183.8 ± 100.0</td>
</tr>
<tr>
<td>BRSV</td>
<td>28.1 ± 19.4</td>
<td>200.2 ± 116.7</td>
</tr>
</tbody>
</table>

Kirkpatrick et al Bov Prac 35:47-55, 2001

Number of Seropositive Calves Responding to MLV

<table>
<thead>
<tr>
<th>Virus</th>
<th>Seropositive calves responding</th>
</tr>
</thead>
<tbody>
<tr>
<td>BVDV1</td>
<td>3/8 (Titers 4-16)</td>
</tr>
<tr>
<td>BVDV2</td>
<td>3/4 (Titers 4-8)</td>
</tr>
<tr>
<td>BRSV</td>
<td>0/23 (Titers 4-128)</td>
</tr>
</tbody>
</table>

IBR were all seronegative PI3- no animals responded to vaccine
Kirkpatrick et al Bov Prac 35:47-55, 2001

Maternal Interference-Mechanism

- Booster Vaccine
- Secondary Response Mat Ab+
- Primary Response Mat Ab-

Primary Response Mat Ab- Booster Vaccine Secondary Response Mat Ab+

Vaccine Vulnerability to Antibody

- Size of Antigenic Mass
- Antigenic Agent
- Type of Adjuvant used in the Vaccine

Humoral Effector Mechanisms against Viruses

NEUTRALIZATION

- Adhesion to host cells blocked
- Prevents infection
- Virus uncapping blocked
- Prevents viral gene expression

Size of Antigenic Mass

- Conventional MLV Vaccine in naive animals
- Small antigenic mass
- Vaccine virus migrates via circulation to target cells of an animal
- Vaccine virus replicates in animal cells
- Stimulates a strong immune response
MODIFIED-LIVE VACCINES

INACTIVATED (KILLED) VACCINES

Size of Antigenic Mass
- Conventional injectable MLV vaccine in the presence of humoral antibody
- Small antigenic mass
- Vaccine virus is neutralized by antibody
- Vaccine virus fails to reach and infect animal cells
- Vaccine virus fails to replicate
- Vaccine virus fails to stimulate immune response

Maternal Interference
- Mucosal - Minimal to no interference
- Parenteral - INTERFERENCE

Parenteral Vaccine
- Adjuvants help protect

Maternal Ab and Parenteral Vaccine

Summary

- BVDV response was present as early as 1-2 weeks
- BHV-1, BRSV were inhibited

Maternal Interference

<table>
<thead>
<tr>
<th>BVDV</th>
<th>BHV-1</th>
<th>BRSV</th>
<th>Maternal Interference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>None</td>
</tr>
</tbody>
</table>

What About Bacterins in Cattle?

- Site specific- Only if you have problem- many of these management related (nutrition, sanitation, environment)- efficacy is variable
- Clostridials
- Respiratory Pathogens
- Leptospira
- Salmonella

What About Bacterins in Cattle?

- Clostridials- Exception to the bacterin age: Calves less than 3 weeks will respond to clostridial toxoids
 - C. tetani- site specific
 - C. perfringens C & D- site specific-young calves will respond
 - C. perfringens A- Some people swear by it, other swear at it
- Clostridial 5-8 way vaccines- give to animals 3-4 months of age and booster
- annual if problem- can be used in cows if C perfrigens type C scours is a problem

What About Bacterins in Cattle?

- Respiratory Pathogens
 - Mannheimia hemolytica (M.hemolytica)-typically over 3 months of age- normal microflora
 - Parenteral vaccines
 - Subunit vaccines that contain leukotoxin and OMP- avoid endotoxin
 - Live whole cell?
 - Killed whole cell???
 - Intranasal- Like concept mucosal immunity and competitive exclusion?? too early to tell
 - Efficacy- better with leukotoxin- fair at best
- Pasturella multicipa (P.multicida)-typically over 1-6 months of age- normal microflora-dairy calves big problem
 - Parenteral vaccines
 - Cross protection from M.hemolytica H.somni subunit vaccines that contain leukotoxin and OMP- ??
 - Live whole cell?
 - Killed whole cell???
 - Killed whole cell- Salmonalla typhimurium mutant R-17 Bacterin- toxicid- Endovac
 - Intranasal- Like concept mucosal immunity and competitive exclusion?? too early to tell
 - Efficacy- marginal at best
What About Bacterins in Cattle?

- Respiratory Pathogens
 - *Histophilus somni* (H.somni)-typically over 3 months of age- not normal microflora- California calf study isolation of H.somni was the highest risk factor for BRD
 - Parenteral vaccines
 - Subunit vaccines that contain leukotoxin and OMP- outer membrane proteins- avoid LOS endotoxin- only available in Canada
 - Killed whole cell - disaster- LOS endotoxin
 - Efficacy- good subunit, otherwise don’t recommend it unless there is a known problem- give it as the only bacterin if use whole cell

- Mycoplasma bovis (M.bovis)-typically over 1 month of age- normal microflora
 - Parenteral vaccines
 - Autogenous Killed whole cell???
 - Efficacy- marginal at best usually poor

- Leptospira
 - Environmentals- L.interrogans serovars pomona, hardjo, canicola, icterohaemorrhagiae. L. kirshneri serovar grippotyphosa- standard 5-way lept-
 - Two doses prebreeding vaccine
 - Revacinate annually- most alum based adjuvant- memory is poor
 - Cattle reservoir-Leptospira borgpetersenii serovar hardjo (Type:hardjo-bovis)(HB) Once infected difficult to clear all the animals- reservoir for herd
 - Vaccinate young stock??? 1-2 months of age Protect against reservoir
 - Can calves become colonized right after birth?

- Salmonella
 - MLV- *Salmonella dublin*-EnterVene-d-
 - Killed whole cell- *Salmonella typhimurium* mutant R-17 Bacterin-toxoid- Endovac
 - Subunit Siderophore Receptor and Porin (SRP) *Salmonella newport*
 - Salmonella is a management problem- nutrition and environment
 - Efficacy- variable

- Endotoxin Stacking and Vaccines (ranked most reactive to least reactive)
 - E.coli Mastitis vaccines
 - Pinkeye (Moraxella bovis)- Whole cell LOS very reactive
 - Histophilus somnus Whole cell LOS very reactive
 - Salmonella-Whole cell LPS
 - Scour vaccines E.coli-Whole cell LPS
 - Mannihemia hemolytica- Whole cell LPS
 - Pasturella multocida
 - Subunit vaccines- no issues, leukotoxin, fimbraie. OMP
 - If need to use more than one- administer on other side of the neck
What is your recommended vaccine protocol from birth to mature cow?

Heifers
- 4-5 months old: MLV IBR-BVD-PI3-BRSV-Heifers-LEPTO 5
- 7-9 months old: MLV IBR-BVD-PI3-BRSV-Heifers-LEPTO 5, must be 60 days prior to first breeding

Calf Viral Respiratory-Reproductive Development Programs

Number Of Immunizations
- MLV 2 to 3 doses by time 8 to 10 mos
- Inactivated 2 to 3 doses by time 8 to 10 mos
- Combination MLV 1 to 2 followed by Inactivated 1 dose

BVDV Vaccination-Fetal Protection
- Prior to breeding
- MLV- need in heifer development
- Inactivated-
 - Cattlemaster has PI claim
 - Virashield has been shown to give fetal protection

The Components of Immunity in the Calf

<table>
<thead>
<tr>
<th>Time of Susceptibility</th>
<th>Innate Immunity</th>
<th>Passive Immunity</th>
<th>Active Immunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conception</td>
<td>Passive (maternal)</td>
<td>Innate immunity</td>
<td>Active immunity</td>
</tr>
<tr>
<td>Birth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weaning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puberty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary
- Neonate immune system influenced by maternal hormones
- Neonatal immune system influenced by colostrum
- Immune response delayed both innate and acquired
- Adjuvants will help overcome neonatal immunosuppression

Summary
- Neonate responds to viral antigens very early 3-7 days intracellular T cell response
- Neonate responds to bacterial antigens later (after 21 days)-extracellular antibody response
Harvey Dunn (1886–1952) Prairie is My Garden, South Dakota Art Museum